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Stereocontrolled synthesis of the IJK ring segment of yessotoxin
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Abstract—A stereocontrolled synthesis of the IJK ring segment of yessotoxin is described. Cyclization of 11 mediated by SmI2 gave
the IJ ring system 12 as the sole product. Construction of the K ring moiety was performed by the acid catalyzed cyclization of
epoxy alcohol 20 to afford the IJK ring segment in a highly stereocontrolled manner.
� 2006 Elsevier Ltd. All rights reserved.
Yessotoxin 1 is a disulfated polycyclic ether isolated
from the digestive glands of scallops, Patinopecten
yessoensis.1 Due to its novel structural features and bio-
logical activities, yessotoxin has attracted the attention
of synthetic chemists.2 During the course of our syn-
thetic study of 1, we have already reported the synthesis
of the A-F and F-I ring segments.2e,g Herein, we
describe the stereocontrolled synthesis of the IJK ring
segment.

Scheme 1 describes the synthesis of the IJ ring system.
Alcohol 2,3 prepared from 2-deoxy-DD-ribose by a
known procedure,4 was converted to bis-silyl ether 3
via protection with TBSCl/imidazole, hydroboration
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with thexylborane followed by oxidative work-up,
and TBS protection in 86% overall yield. Hydrogeno-
lysis of the benzylidene acetal of 3 followed by protec-
tion with MPMCl/KH afforded bis-MPM ether 4 in
84% overall yield. Selective cleavage of the primary
MPM ether was carried out with TMSI/HMDS to
give primary alcohol 5 in 92% yield.2e Swern oxidation
of 5 followed by treatment with 2-lithio-1,3-dithiane
provided 6 as an inseparable mixture of diastereoiso-
mers in 89% overall yield. Protection of 6 with MOM-
Cl/iPr2NEt gave a 10:1 mixture of the desired 7 and
its stereoisomer 8 in 89% combined yield. These
isomers, 7 and 8, were easily separated by column
chromatography at this stage. Deprotection of the
toxin (1)
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Scheme 1. Reagents and conditions: (a) (i) TBSCl, imidazole, DMF, rt, 98%; (ii) thexylborane, THF, 0 �C, then 3 N NaOH, 30% H2O2, 89%; (iii)
TBSCl, imidazole, DMF, 0 �C, 99%; (b) (i) H2, Pd(OH)2-C, rt, quant; (ii) MPMCl, KH, THF, 0 �C to rt, 84%; (c) TMSI, HMDS, CH2Cl2, 0 �C, then
K2CO3, MeOH, rt, 92%; (d) (i) (COCl)2, DMSO, CH2Cl2, �78 �C, then Et3N, �78 �C to rt; (ii) 1,3-dithiane, n-BuLi, THF, �78 �C, 89% (2 steps); (e)
MOMCl, iPr2NEt, CH2Cl2, reflux; 89% (7:8 = 10:1); (f) DDQ, saturated NaHCO3, CH2Cl2, rt; (g) ethyl propiolate, N-methylmorpholine, CH2Cl2,
rt, 86% (2 steps); (h) MeI, saturated NaHCO3, CH2Cl2, reflux, 82%; (i) SmI2, MeOH, THF, �78 �C, 79%.
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MPM ether 7 with DDQ followed by treatment with
ethyl propiolate/NMM gave acrylate 10 in 86% over-
all yield. Hydrolysis of the dithio acetal 10 was carried
out with MeI to give aldehyde 11 in 82% yield. The
cyclization precursor 11 was then subjected to the
Nakata protocol. Thus, treatment of 11 with SmI2

in the presence of MeOH furnished 12 as a single ste-
reoisomer in 79% yield.5,6

The stereochemistry of 12 was confirmed by 1H NMR
analysis of the acetate derivative 13, prepared from 12
with Ac2O/pyridine, as shown in Figure 1.7 Coupling
constants, JHa–Hb = 10.5 Hz and JHb–Hc = 2.4 Hz ob-
served clearly indicated the ax–ax and ax–eq relation-
ship of these protons, respectively.

Construction of the K ring moiety is illustrated in
Scheme 2. Reduction of the ester 12 with LiAlH4 gave
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Figure 1. 1H NMR analysis of 13.
the corresponding diol, which was converted to bis-ben-
zyl ether 14 in 97% overall yield. Selective removal of the
primary TBS group with CSA, iodination of the result-
ing primary alcohol, and treatment with NaCN afforded
15 in 87% yield. Reduction of the nitrile 15 with DI-
BAL-H gave aldehyde 16 in 81% yield. Treatment of
16 with Eschenmoser’s salt afforded a-vinyl aldehyde
17,8 which was then subjected to Wittig reaction to
provide 18 in 93% overall yield. Reduction of the dienyl
ester 18 with DIBAL-H afforded 19 in 96% yield. Regio-
and stereoselective epoxidation of the diene 19 was
performed under Sharpless conditions to give 20 as a
single stereoisomer in quantitative yield. Removal of
the TBS protection with TBAF afforded diol 21 in quan-
titative yield. Regio- and stereoselective exo-cyclization
of the epoxy alcohol 21 was carried out with CSA to fur-
nish the IJK ring segment 22 as a single stereoisomer in
84% yield.9 The stereochemistry of 22 was unambigu-
ously determined by X-ray crystallographic analysis of
a crystalline derivative 23, Figure 2, prepared by
esterification with p-Br-BzCl/pyridine followed by
removal of the MOM protection with CSA in 77% over-
all yield.10

In conclusion, we have achieved the synthesis of the IJK
ring segment of yessotoxin 1 via SmI2 mediated cycliza-
tion and acid catalyzed cyclization as key ring-closure
processes in highly stereocontrolled manner. Further
studies towards the total synthesis of 1 are now in
progress in our laboratories.
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Scheme 2. Reagents and conditions: (a) (i) LiAlH4, ether, 0 �C; (ii) BnBr, NaH, THF, reflux, 97% (2 steps); (b) (i) CSA, MeOH, 0 �C, 90%; (ii) I2,
PPh3, imidazole, benzene–ether, quant; (iii) NaCN, DMF, 50 �C, 97%; (c) DIBAL-H, CH2Cl2, �78 �C, 81%; (d) Me2N+@CH2I�, Et3N, CH2Cl2, rt;
(e) Ph3P@C(Me)CO2Et, CH2Cl2, rt, 93% (2 steps); (f) DIBAL-H, CH2Cl2, �78 �C, 96%; (g) (�)-DET, Ti(OiPr)4, TBHP, 4 Å MS, CH2Cl2, �20 �C,
quant; (h) TBAF, THF, rt, quant; (i) CSA, CH2Cl2, 0 �C, 84%; (j) (i) p-Br-BzCl, pyridine, CH2Cl2, 77%; (ii) CSA, MeOH, rt, quant.

Figure 2. ORTEP drawing of 23.
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