

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 47 (2006) 6545–6548

Stereocontrolled synthesis of the IJK ring segment of yessotoxin

Isao Kadota,^{a,*} Takashi Abe,^b Yuki Sato,^b Chizuko Kabuto^a and Yoshinori Yamamoto^b

^a Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
^b Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Jap ^bDepartment of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan

> Received 2 June 2006; revised 28 June 2006; accepted 7 July 2006 Available online 31 July 2006

Abstract—A stereocontrolled synthesis of the IJK ring segment of yessotoxin is described. Cyclization of 11 mediated by SmI_2 gave the IJ ring system 12 as the sole product. Construction of the K ring moiety was performed by the acid catalyzed cyclization of epoxy alcohol 20 to afford the IJK ring segment in a highly stereocontrolled manner. $© 2006 Elsevier Ltd. All rights reserved.$

Yessotoxin 1 is a disulfated polycyclic ether isolated from the digestive glands of scallops, Patinopecten yessoensis.^{[1](#page-2-0)} Due to its novel structural features and biological activities, yessotoxin has attracted the attention of synthetic chemists.[2](#page-2-0) During the course of our synthetic study of 1, we have already reported the synthesis of the A-F and F-I ring segments.^{2e,g} Herein, we describe the stereocontrolled synthesis of the IJK ring segment.

[Scheme 1](#page-1-0) describes the synthesis of the IJ ring system. Alcohol 2, [3](#page-2-0) prepared from 2-deoxy-D-ribose by a known procedure,^{[4](#page-2-0)} was converted to bis-silyl ether 3 via protection with TBSCl/imidazole, hydroboration with thexylborane followed by oxidative work-up, and TBS protection in 86% overall yield. Hydrogenolysis of the benzylidene acetal of 3 followed by protection with MPMCl/KH afforded bis-MPM ether 4 in 84% overall yield. Selective cleavage of the primary MPM ether was carried out with TMSI/HMDS to give primary alcohol 5 in 92% yield.^{2e} Swern oxidation of 5 followed by treatment with 2-lithio-1,3-dithiane provided 6 as an inseparable mixture of diastereoisomers in 89% overall yield. Protection of 6 with MOM- $Cl/^i Pr_2 NEt$ gave a 10:1 mixture of the desired 7 and its stereoisomer 8 in 89% combined yield. These isomers, 7 and 8, were easily separated by column chromatography at this stage. Deprotection of the

yessotoxin (**1**)

Keywords: Yessotoxin; Polycyclic ethers; Cyclization.

^{*} Corresponding author. Tel.: $+81$ 22 795 6755; fax: $+81$ 22 795 6784; e-mail: ikadota@mail.tains.tohoku.ac.jp

^{0040-4039/\$ -} see front matter © 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2006.07.027

Scheme 1. Reagents and conditions: (a) (i) TBSCl, imidazole, DMF, rt, 98%; (ii) thexylborane, THF, 0 °C, then 3 N NaOH, 30% H₂O₂, 89%; (iii) TBSCl, imidazole, DMF, 0 °C, 99%; (b) (i) H₂, Pd(OH)₂-C, rt, quant; (ii) MPMCl, KH, THF, 0 °C to rt, 84%; (c) TMSI, HMDS, CH₂Cl₂, 0 °C, then K_2CO_3 , MeOH, rt, 92%; (d) (i) (COCl)₂, DMSO, CH₂Cl₂, -78 °C, then Et₃N, -78 °C to rt; (ii) 1,3-dithiane, *n*-BuLi, THF, -78 °C, 89% (2 steps); (e) MOMCl, ${}^{i}Pr_{2}NEt$, CH₂Cl₂, reflux; 89% (7:8 = 10:1); (f) DDQ, saturated NaHCO₃, CH₂Cl₂, rt; (g) ethyl propiolate, N-methylmorpholine, CH₂Cl₂, rt, 86% (2 steps); (h) MeI, saturated NaHCO₃, CH₂Cl₂, reflux, 82%; (i) SmI₂, MeOH, THF, -78 °C, 79%.

MPM ether 7 with DDQ followed by treatment with ethyl propiolate/NMM gave acrylate 10 in 86% overall yield. Hydrolysis of the dithio acetal 10 was carried out with MeI to give aldehyde 11 in 82% yield. The cyclization precursor 11 was then subjected to the Nakata protocol. Thus, treatment of 11 with $SmI₂$ in the presence of MeOH furnished 12 as a single stereoisomer in 79% yield.^{[5,6](#page-2-0)}

The stereochemistry of 12 was confirmed by ${}^{1}H$ NMR analysis of the acetate derivative 13, prepared from 12 with Ac_2O /pyridine, as shown in Figure 1.^{[7](#page-3-0)} Coupling constants, $J_{\text{Ha-Hb}} = 10.5 \text{ Hz}$ and $J_{\text{Hb-Hc}} = 2.4 \text{ Hz}$ observed clearly indicated the ax–ax and ax–eq relationship of these protons, respectively.

Construction of the K ring moiety is illustrated in [Scheme 2.](#page-2-0) Reduction of the ester 12 with LiAlH₄ gave

Figure 1. 1 H NMR analysis of 13.

the corresponding diol, which was converted to bis-benzyl ether 14 in 97% overall yield. Selective removal of the primary TBS group with CSA, iodination of the resulting primary alcohol, and treatment with NaCN afforded 15 in 87% yield. Reduction of the nitrile 15 with DI-BAL-H gave aldehyde 16 in 81% yield. Treatment of 16 with Eschenmoser's salt afforded α -vinyl aldehyde 17, [8](#page-3-0) which was then subjected to Wittig reaction to provide 18 in 93% overall yield. Reduction of the dienyl ester 18 with DIBAL-H afforded 19 in 96% yield. Regioand stereoselective epoxidation of the diene 19 was performed under Sharpless conditions to give 20 as a single stereoisomer in quantitative yield. Removal of the TBS protection with TBAF afforded diol 21 in quantitative yield. Regio- and stereoselective exo-cyclization of the epoxy alcohol 21 was carried out with CSA to furnish the IJK ring segment 22 as a single stereoisomer in 84% yield.^{[9](#page-3-0)} The stereochemistry of 22 was unambiguously determined by X-ray crystallographic analysis of a crystalline derivative 23, [Figure 2,](#page-2-0) prepared by esterification with p -Br-BzCl/pyridine followed by removal of the MOM protection with CSA in 77% over-all yield.^{[10](#page-3-0)}

In conclusion, we have achieved the synthesis of the IJK ring segment of yessotoxin 1 via $SmI₂$ mediated cyclization and acid catalyzed cyclization as key ring-closure processes in highly stereocontrolled manner. Further studies towards the total synthesis of 1 are now in progress in our laboratories.

Scheme 2. Reagents and conditions: (a) (i) LiAlH₄, ether, 0 °C; (ii) BnBr, NaH, THF, reflux, 97% (2 steps); (b) (i) CSA, MeOH, 0 °C, 90%; (ii) I₂, PPh₃, imidazole, benzene–ether, quant; (iii) NaCN, DMF, 50 °C, 97%; (c) DIBAL-H, CH₂Cl₂, -78 °C, 81%; (d) Me₂N⁺=CH₂I⁻, Et₃N, CH₂Cl₂, rt; (e) $Ph_3P=C(Me)CO_2Et$, CH_2Cl_2 , rt, 93% (2 steps); (f) DIBAL-H, CH_2Cl_2 , -78 °C, 96%; (g) (-)-DET, Ti(OⁱPr)₄, TBHP, 4 Å MS, CH_2Cl_2 , -20 °C, quant; (h) TBAF, THF, rt, quant; (i) CSA, CH₂Cl₂, 0 °C, 84%; (j) (i) p-Br-BzCl, pyridine, CH₂Cl₂, 77%; (ii) CSA, MeOH, rt, quant.

Figure 2. ORTEP drawing of 23.

Acknowledgements

This work was financially supported by the Novartis Foundation for the Promotion of Science, the Kurata Memorial Hitachi Science and Technology Foundation, the Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

References and notes

- 1. (a) Murata, M.; Kumagai, M.; Lee, J. S.; Yasumoto, T. Tetrahedron Lett. 1987, 28, 5869–5872; (b) Satake, M.; Terasawa, K.; Kadowaki, Y.; Yasumoto, T. Tetrahedron Lett. 1996, 37, 5955-5958.
- 2. For synthetic studies of 1, see: (a) Mori, Y.; Hayashi, H. Tetrahedron 2002, 58, 1789–1797; (b) Suzuki, K.; Nakata,

T. Org. Lett. 2002, 4, 3943–3946; (c) Mori, Y.; Takase, T.; Noyori, R. Tetrahedron Lett. 2003, 44, 2319–2322; (d) Oishi, T.; Watanabe, K.; Murata, M. Tetrahedron Lett. 2003, 44, 7315–7319; (e) Kadota, I.; Ueno, H.; Yamamoto, Y. Tetrahedron Lett. 2003, 44, 8935–8938; (f) Watanabe, K.; Suzuki, M.; Murata, M.; Oishi, T. Tetrahedron Lett. **2005**, 46, 3991–3995; (g) Kadota, I.; Ueno, H.; Sato, Y.; Yamamoto, Y. Tetrahedron Lett. 2006, 47, 89–92; (h) Oishi, T.; Suzuki, M.; Watanabe, K.; Murata, M. Tetrahedron Lett. 2006, 47, 3975–3978.

- 3. Kadota, I.; Kadowaki, C.; Park, C.-H.; Takamura, H.; Sato, K.; Chan, P. W. H.; Thorand, S.; Yamamoto, Y. Tetrahedron 2002, 58, 1799–1816.
- 4. Nicolaou, K. C.; Nugiel, D. A.; Couladouros, E.; Hwang, C.-K. Tetrahedron 1990, 46, 4517–4552.
- 5. (a) Hori, N.; Matsukura, H.; Matsuo, G.; Nakata, T. Tetrahedron Lett. 1999, 40, 2811-2814; (b) Hori, N.; Matsukura, H.; Nakata, T. Org. Lett. 1999, 1, 1099–1101; (c) Matsuo, G.; Hori, N.; Nakata, T. Tetrahedron Lett. 1999, 40, 8859–8862.
- 6. The SmI₂ mediated reaction of 11 at 0° C gave a cyclized product which had no MOMO group on the I ring. Elimination of the MOMO group from the ketyl intermediate would be faster than the cyclization at higher temperature.

- 7. Compound 13: ¹H NMR (400 MHz, C_6D_6) δ 5.05 (dd, $J = 10.5$, 2.4 Hz, 1H), 4.89 (d, $J = 6.6$ Hz, 1H), 4.70 (d, $J = 6.6$;Hz, 1H), 4.57 (m, 1H), 4.14 (d, $J = 2.4$ Hz, 1H), 3.98–3.90 (m, 3H), 3.76–3.73 (m, 2H), 3.61–3.56 (m, 1H), 3.30–3.25 (m, 4H), 2.55 (dd, $J = 15.6$, 3.6 Hz, 1H), 2.46 $(dd, J=15.6, 8.0 \text{ Hz}, 1\text{H}), 2.23-2.10 \text{ (m, 2H)}, 1.71 \text{ (s, 3H)},$ 1.69–1.48 (m, 2H), 1.16 (s, 3H), 0.98 (s, 9H), 0.93 (t, $J = 7.3$ Hz, 3H), 0.90 (s, 9H), 0.11 (s, 3H), 0.10 (s, 3H), -0.03 (s, 3H), -0.09 (s, 3H).
- 8. (a) Schreiber, J.; Maag, H.; Hashimoto, N.; Eschenmoser, A. Angew. Chem., Int. Ed. Engl. 1971, 10, 330–331; (b) Takano, S.; Inomata, K.; Samizu, K.; Tomita, S.; Yanase, M.; Suzuki, M.; Iwabuchi, Y.; Sugihara, T.; Ogasawara, K. Chem. Lett. 1989, 1283–1284.
- 9. Compound 22: ¹H NMR (400 MHz, CDCl₃) δ 7.60–7.33 $(m, 10H)$, 5.08 (s, 1H), 4.89 (s, 1H), 4.83 (d, $J = 6.4$ Hz, 1H), 4.69 (d, $J = 7.6$ Hz, 1H), 4.68 (d, $J = 6.4$ Hz, 1H), 4.52 (d, $J = 12.0$ Hz, 1H), 4.46 (d, $J = 12.0$ Hz, 1H), 4.45 $(d, J = 7.6 \text{ Hz}, 1\text{ H}), 3.95 (d, J = 2.8 \text{ Hz}, 1\text{ H}), 3.91 (s, 1\text{ H}),$ 3.83–3.74 (m, 3H), 3.63–3.57 (m, 3H), 3.39–3.32 (m, 3H),

3.35 (s, 3H), 2.53–2.51 (m, 2H), 2.19 (dddd, $J = 14.4, 7.6$, 7.2, 2.8 Hz, 1H), 2.09–2.02 (m, 2H), 1.70–1.41 (m, 3H), 1.28 (s, 3H), 1.07 (s, 3H).

10. Crystal data for **23**: $4(C_{39}H_{45}O_9Br)(CH_3CO_2C_2H_5);$ $M_{\rm W} = 3024.8$, monoclinic, space group $P2_1$ (#4); $a =$ 13.427(3), $b = 46.89(1)$, $c = 13.452(3)$ Å, $b = 92.953(1)$ °, $V = 8459(3)$ Å³; $Z = 2$, $D_c = 1.188$ g/cm³, $F(000) = 3168$, $\mu(\text{Mo-K}\alpha) = 1.024 \text{ cm}^{-1}$, Rigaku/MSC CCD diffractometer, $T = 173$ K, 95,659 reflections measured, 34,323 unique $(R_{int} = 0.059)$, final $R1 = 0.155$ and wR (all $data$) = 0.423. The relatively high R values are due to the fact that four independent molecules are included in the asymmetric unit as well as the crystals being of poor quality. Each four independent molecule adopts a different conformation of the terminal benzyl groups. Complete crystallographic data, as a CIF file, have been deposited with Cambridge Crystallographic Data Centre (CCDC No. 612577). Copies can be obtained free of charge from: The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (e-mail: deposit@ccdc.cam.ac.uk).